Reduced expression of C/EBPβ-LIP extends health and lifespan in mice

2018 
The risks of major diseases including type II diabetes, cancer and Alzheimer’s are linked to the biological process of ageing. By finding ways to slow ageing, we can help more people to live longer healthier lives while avoiding these illnesses. Placing some animals on a diet that contains only two-thirds as many calories as they would normally eat can improve their fitness during old age and delay the onset of many age-related problems. It is unrealistic to expect people to control their diet to this extent, yet there may be other ways to bring about the same effects. Calorie restriction affects the activity of many different genes; for example, it causes a gene that produces a protein known as Liver-enriched Inhibitory Protein (LIP for short) to shut down. LIP controls the activity of many genes involved in metabolism, so it could be a key target for drugs to control ageing. Muller, Zidek et al. used mice that are unable to produce LIP to study this protein’s effect on ageing. The life expectancy of female mice lacking LIP increased by up to 20%. These mice were leaner, fitter, more resistant to cancer, had stronger immune systems and controlled their blood sugar levels better than normal mice. Male mice that lacked LIP did not live longer but did experience some ageing-related benefits. Genetic analysis also showed that gene activity particularly of metabolic genes is more robust in old female LIP-deficient mice and thus more similar to young control mice than old control mice. The results presented by Muller, Zidek et al. suggest that targeting the activity of the LIP gene could help to slow the ageing process. It is not yet clear whether shutting off LIP has similar beneficial effects in humans. Further research is also needed to investigate why female mice gain more benefits from a lack of LIP than males do.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    90
    References
    13
    Citations
    NaN
    KQI
    []