Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

2011 
We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching. The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20× wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events. Average pulse amplitudes differ by <2% between the two pores and demonstrate that the fabrication technique is able to produce pores with nearly identical geometries. Because the two nanopores in series sense single particles at two discrete locations, particle properties, e.g., electrophoretic mobility, are determined from the pore-to-pore transit time.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    93
    Citations
    NaN
    KQI
    []