The effect of oxygen on the strength and ductility of polycrystalline vanadium in the range of 4.2 to 400 K

1977 
The effect of oxygen on the yield stress and ductility of polycrystalline vanadium was investigated for concentrations of 0.004 to 1.25 at. pct oxygen over the temperature range of 4.2 to 400 K. The dependence of the resolved shear stress on temperature and composition was tested against the different interstitial solute strengthening theories. A parabolic dependence of τ on concentration was found to hold in the low solute concentration range and a linear dependence was observed at high oxygen concentrations. A statistical model proposed by Labusch gives a good description of the concentration dependence of the shear stress for the entire temperature-composition range investigated. This correlation suggests that a spectrum of defects may be contributing to the strengthening of vanadium-oxygen alloys. The combined effects of oxygen content and temperature on the strain hardening exponent and reduction in area was investigated. Alloys containing 0.83 at. pct or less do not exhibit a brittle-ductile transition down to 4.2 K but a 1 at. pct alloy is brittle at 77 K and a 1.25 at. pct alloy has a BDTT between 135 and 195 K.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    6
    Citations
    NaN
    KQI
    []