Novel Oligoamine Analogues Inhibit Lysine-Specific Demethylase 1 and Induce Reexpression of Epigenetically Silenced Genes

2009 
Purpose: Abnormal DNA CpG island hypermethylation and transcriptionally repressive histone modifications are associated with the aberrant silencing of tumor suppressor genes. Lysine methylation is a dynamic, enzymatically controlled process. Lysine-specific demethylase 1 (LSD1) has recently been identified as a histone lysine demethylase. LSD1 specifically catalyzes demethylation of mono– and dimethyl–lysine 4 of histone 3 (H3K4), key positive chromatin marks associated with transcriptional activation. We hypothesized that a novel class of oligoamine analogues would effectively inhibit LSD1 and thus cause the reexpression of aberrantly silenced genes. Experimental Design: Human colorectal cancer cells were treated with the oligoamines and changes in mono- and dimethyl-H3K4 and other chromatin marks were monitored. In addition, treated cells were evaluated for the reexpression of the aberrantly silenced secreted frizzled-related proteins ( SFRP ) Wnt signaling pathway antagonist genes. Finally, the effects of the LSD1 inhibitors were evaluated in an in vivo xenograft model. Results: Treatment of HCT116 human colon adenocarcinoma cells in vitro resulted in increased H3K4 methylation and reexpression of silenced SFRP genes. This reexpression is also accompanied by a decrease in H3K9me2 repressive mark. Importantly, cotreatment with low doses of oligoamines and a DNA methyltransferase inhibitor highly induces the reexpression of the aberrantly silenced SFRP2 gene and results in significant inhibition of the growth of established tumors in a human colon tumor model in vivo . Conclusions: The use of LSD1-inhibiting oligoamine analogues in combination with DNA methyltransferase inhibitors represents a highly promising and novel approach for epigenetic therapy of cancer. (Clin Cancer Res 2009;15(23):7217–28)
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    174
    Citations
    NaN
    KQI
    []