High infection attack rates of SARS-CoV-2 in Dutch households revealed by dense sampling

2021 
BackgroundIndoor environments are considered a main setting for transmission of SARS-CoV-2. Households in particular present a close-contact environment with high probability of transmission between persons of different ages and with different roles in society. MethodsComplete households with a laboratory-confirmed SARS-CoV-2 positive case in the Netherlands (March-May 2020) were included. At least three home visits were performed during 4-6 week of follow-up, collecting naso- and oropharyngeal swabs, oral fluid, faeces and blood samples for molecular and serological analyses of all household members. Symptoms were recorded from two weeks before the first visit up to the last visit. Secondary attack rates (SAR) were estimated with logistic regression. A transmission model was used to assess transmission routes in the household. ResultsA total of 55 households with 187 household contacts were included. In 17 households no transmission took place, and in 11 households all persons were infected. Estimated SARs were high, ranging from 35% (95%CI: 24%-46%) in children to 51% (95%CI: 39%-63%) in adults. Estimated transmission rates in the household were high, with reduced susceptibility of children compared to adolescents and adults (0.67; 95%CI: 0.40-1.1). ConclusionEstimated SARs were higher than reported in earlier household studies, presumably owing to a dense sampling protocol. Children were shown to be less susceptible than adults, but the estimated SAR in children was still high. Our results reinforce the role of households as main multiplier of SARS-CoV-2 infection in the population. Key pointsWe analyze data from a SARS-CoV-2 household study and find higher secondary attack rates than reported earlier. We argue that this is due to a dense sampling strategy that includes sampling at multiple time points and of multiple anatomical sites.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    3
    Citations
    NaN
    KQI
    []