The Effects of Pipe Geometry on Fluid Flow in a Muon Collider Particle Production System

2014 
Liquid mercury has been investigated as a potential high-Z target for the production of muon particles for the Muon Collider project. This paper investigates the dynamics of mercury flow in a design of the target delivery system, with the objective of determining pipe configurations that yield weak turbulence intensities at the exit of the pipe. Eight curved pipe geometries with various half-bend angles and with/without nozzles in the exit region are studied. A theoretical analysis is carried out for steady laminar incompressible flow, whereby the terms representing the curvature effects are examined. Subsequent simulations of the turbulent flow regime in the pipes are based on a realizable k-ɛ Reynolds-Averaged Navier–Stokes (RANS) equations approach. The effects of half-bend angles and the presence of a nozzle on the momentum thickness and turbulence intensity at the exit plane of the curved pipe are discussed, as are the implications for the target delivery pipe designs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []