Record Statistics for Multiple Random Walks

2012 
We study the statistics of the number of records R_{n,N} for N identical and independent symmetric discrete-time random walks of n steps in one dimension, all starting at the origin at step 0. At each time step, each walker jumps by a random length drawn independently from a symmetric and continuous distribution. We consider two cases: (I) when the variance \sigma^2 of the jump distribution is finite and (II) when \sigma^2 is divergent as in the case of Levy flights with index 0 1 in the two cases. We find that for large N, \alpha_N \approx 2 \sqrt{\log N} independently of \sigma^2 in case I. In contrast, in case II, the amplitude approaches to an N-independent constant for large N, \alpha_N \approx 4/\sqrt{\pi}, independently of 0
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []