Artificial AmyR::XlnR transcription factor induces α-amylase production in response to non-edible xylan-containing hemicellulosic biomass

2021 
Abstract Filamentous fungi belonging to the Aspergillus genus are one of the most favored microorganisms for industrial enzyme production because they can secrete large amounts of proteins into the culture medium. α-Amylase, an enzyme produced by Aspergillus species, is important for food and industrial applications. The production of α-amylase is induced by starch, mainly obtained from the edible biomass; however, the increasing demand for foods is limiting the application of the latter. Therefore, it is expected that using the non-edible biomass, such as rice straw, could improve the competition for industrial application starch containing resources. The transcription factor AmyR activates the transcription of amylolytic enzyme genes, while the transcription factor XlnR activates the transcription of xylanolytic enzyme genes in response to xylose. In this study, we aimed to construct an artificial AmyR::XlnR transcription factor (AXTF) by replacing the DNA-binding domain (1–159 amino acids) of XlnR with that (1–68 aa) of AmyR, which is capable of inducing amylolytic enzyme production in response to xylan-containing hemicellulosic biomass. The chimeric transcription factor AXTF was constructed and expressed using the gapA promoter in the amyR-deficient mutant strain SA1. When the AXTF strain was cultured in the minimal medium containing xylose as the carbon source, the amyB, amyF, agdB, and agdE transcription levels were 41.1-, 11.3-, 37.9-, and 23.7-fold higher, respectively, than those of the wild-type strain. The α-amylase and α-glucosidase activities in the culture supernatant of the AXTF strain grown with xylose for 48 h were 696.6 and 536.1 U/mL, respectively, while these activities were not detected in the culture supernatant of the wild-type and SA1 strains. When rice straw hydrolysate was used as a carbon source, the α-amylase and α-glucosidase activities were 590.2 and 362.7 U/mL, respectively. Thus, we successfully generated an Aspergillus nidulans strain showing amylolytic enzyme production in response to non-edible xylan-containing hemicellulosic biomass by transforming it with the chimeric transcription factor AXTF. Furthermore, the use of genes encoding engineered transcription factors is advantageous because introducing such genes into an industrial Aspergillus strain has similar simultaneous effects on multiple amylase genes controlled by AmyR.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    1
    Citations
    NaN
    KQI
    []