Semi-Supervised Text Classification with Balanced Deep Representation Distributions

2021 
Semi-Supervised Text Classification (SSTC) mainly works under the spirit of self-training. They initialize the deep classifier by training over labeled texts; and then alternatively predict unlabeled texts as their pseudo-labels and train the deep classifier over the mixture of labeled and pseudo-labeled texts. Naturally, their performance is largely affected by the accuracy of pseudo-labels for unlabeled texts. Unfortunately, they often suffer from low accuracy because of the margin bias problem caused by the large difference between representation distributions of labels in SSTC. To alleviate this problem, we apply the angular margin loss, and perform Gaussian linear transformation to achieve balanced label angle variances, i.e., the variance of label angles of texts within the same label. More accuracy of predicted pseudo-labels can be achieved by constraining all label angle variances balanced, where they are estimated over both labeled and pseudo-labeled texts during self-training loops. With this insight, we propose a novel SSTC method, namely Semi-Supervised Text Classification with Balanced Deep representation Distributions (S2TC-BDD). To evaluate S2TC-BDD, we compare it against the state-of-the-art SSTC methods. Empirical results demonstrate the effectiveness of S2TC-BDD, especially when the labeled texts are scarce.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []