Fungal allergen‐induced IL‐33 secretion involves cholesterol‐dependent, VDAC‐1‐mediated ATP release from the airway epithelium

2020 
KEY POINTS: Alternaria aeroallergens induce the release of ATP from human bronchial epithelial (HBE) cells by activating a conductive pathway involving VDAC-1 and by exocytosis of ATP localized within membrane vesicles. Inhibition of VDAC-1 blocked Alternaria-evoked Ca2+ uptake across the plasma membrane of HBE cells and IL-33 release into the extracellular media. Reducing cholesterol content with a cholesterol scavenger (b-methylcyclodextrin) or statin compound (simvastatin) blocked ATP and IL-33 release by lowering the expression of VDAC-1 in the plasma membrane. Pretreatment with simvastatin for 24 hours also inhibited the increase in tight junction macromolecule permeability that occurs following Alternaria exposure. These results establish a novel role for VDAC-1 as a mechanism underlying ATP release induced by fungal allergens and suggests a possible therapeutic use for cholesterol lowering compounds in reducing Alternaria-stimulated allergic inflammation. ABSTRACT: Human bronchial epithelial (HBE) cells exposed to allergens derived from the common saprophytic fungus, Alternaria alternata release ATP, which in turn stimulates P2X7 receptor-mediated Ca(2+) uptake across the plasma membrane. The subsequent increase in intracellular calcium concentration induces proteolytic processing and secretion of IL-33, a critical cytokine involved in the initiation of allergic airway inflammation. A major objective of the present study was to identify the mechanism responsible for conductive ATP release. The results show that pretreatment of HBE cells with inhibitors of the voltage-dependent anion channel-1 (VDAC-1) or treatment with a VDAC-1 selective blocking antibody or silencing mRNA expression of the channel by RNAi, inhibit Alternaria-evoked ATP release. Moreover, inhibition of VDAC-1 channel activity or reducing protein expression blocked the secretion of IL-33. Similarly, reducing the cholesterol content of HBE cells with simvastatin or the cholesterol scavenger beta-methylcyclodextrin also blocked ATP release and IL-33 secretion by decreasing the level of VDAC-1 expression in the plasma membrane. In addition, simvastatin inhibited the increase in tight junction macromolecule permeability that was previously observed after Alternaria exposure. These results demonstrate a novel function for VDAC-1 as the conductive mechanism responsible for Alternaria-induced ATP release, an essential early step in the processing, mobilization and secretion of IL-33 by the airway epithelium. Furthermore, the simvastatin-evoked reduction of VDAC-1 expression in the plasma membrane, suggests the possibility that cholesterol lowering compounds may be beneficial in alleviating allergic airway inflammation induced by fungal allergens. This article is protected by copyright. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    67
    References
    5
    Citations
    NaN
    KQI
    []