Synthesis of exo-tricyclopentadiene from endo-dicyclopentadiene over mesoporous aluminosilicate catalysts prepared from Y zeolite

2019 
A highly ordered mesoporous aluminosilicate (MMZY) was prepared by a top-down and bottom-up method using HY zeolite as a raw material. A pellet-type catalyst was prepared through extrusion using a twin-screw extruder. The effects of the Si/Al2 ratio of the HY zeolite used in the MMZY catalyst preparation on the physicochemical and acid properties of MMZY catalysts were investigated. The oligomerization of endo-dicyclopentadiene (endo-DCPD) was performed in a spinning basket reactor, and the deactivated catalyst was repeatedly regenerated to verify the possibility of reusing the catalyst. It was confirmed that ordered hexagonal arrays of mesopores were well developed in the MMZY(27) and MMZY(48) catalysts, whereas the mesoporous structure of the MMZY(6) and MMZY(12) materials with relatively large amounts of Al collapsed. As the Si/Al2 molar ratio of the MMZY catalyst was increased, the number of weak acid sites increased prominently and the acid strength decreased. MMZY(27) and MMZY(48) are more effective for the oligomerization of endo-DCPD to exo-tricyclopentadiene (exo-TCPD) compared to a microporous HY catalyst. This is attributed to the abundant acid sites and to the well-developed mesopore structure. Calcination in air was found to be effective for the regeneration of the deactivated MMZY pellet catalyst for synthesis of exo- TCPD from endo-DCPD.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    1
    Citations
    NaN
    KQI
    []