Disclosing the Template-Induced Misfolding Mechanism of Tau Protein by Studying the Dissociation of the Boundary Chain from the Formed Tau Fibril Based on a Steered Molecular Dynamics Simulation
2019
The level of tau aggregation into neurofibrillary tangles, including paired helical filament (PHF) and straight filament (SF), is closely associated with Alzheimer’s disease. Despite the pathological importance of misfolding and aggregation of tau, the corresponding mechanism remains unclear. Therefore, to uncover the misfolding mechanism of the tau monomer upon induction of formed PHF and SF, in this study, a conventional molecular dynamics simulation combined with a steered molecular dynamics simulation was performed to study the dissociation of the boundary chain. Interestingly, our results show that the dissociation mechanisms of the boundary chain in PHF and SF are different. In PHF, the boundary chain begins to dissociate from regions β2 and β3 and ends at β8. However, in SF, it is simultaneously dissociated from β1 and β8 and ends at β5. The dissociation of the boundary chain is the reverse of template-induced misfolding of the monomer. Therefore, we can deduce the misfolding mechanism of the monom...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
47
References
4
Citations
NaN
KQI