Characterization of transcriptome and identification of biomineralization genes in winged pearl oyster (Pteria penguin) mantle tissue
2017
Abstract The winged pearl oyster Pteria penguin is a commercially important marine pearl oyster species, with pearls that are quite different from those of other pearl oysters. Among such species, mantle tissue is the main organ responsible for shell and pearl formation, a biomineralization process that is regulated by a series of genes, most of which remain unknown. In this study, we sequenced and characterized the transcriptome of P. penguin mantle tissue using the HiSeq 2000 sequencing platform. A total of 93,204 unique transcripts were assembled from 51,580,076 quality reads, with a mean length of 608 bp, and 40,974 unigenes were annotated. The sequence data enabled the identification of 79,702 potential single nucleotide polymorphism loci and 4345 putative simple sequence repeat loci. A total of 71 unique transcripts were identified homologous to known biomineralization genes, including mantle gene , nacrein , pearlin , pif , chitinase , and shematrin , of which only 3 were previously reported in P. penguin . qPCR analysis indicated that 10 randomly selected biomineralization genes were much more highly expressed in mantle tissue than in the other tissues. In addition, 30 unique sequences were identified as highly expressed, with FPKM values of > 3000, and most of these were biomineralization-related genes, including shematrin family genes, a jacalin-related lectin synthesis gene, calponin-2, and paramyosin. These findings will be useful for future studies of biomineralization in P. penguin , as well as in other Pteria species.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
43
References
12
Citations
NaN
KQI