Low Environmental Temperature Influences the Fatigue Resistance of Nickel-titanium Files

2018 
Abstract Introduction The purpose of this study was to evaluate the effect of different temperatures (0°C, 10°C, 22°C, 37°C, and 60°C) on the cyclic fatigue life of nickel-titanium (NiTi) files using a new fatigue test model in zirconium oxide. Methods Three superelastic NiTi files (EndoSequence [Brasseler USA, Savannah, GA], ProFile [Dentsply Tulsa Dental Specialties, Tulsa, OK], and K3 [SybronEndo, Orange, CA]), and 3 heat-treated (K3XF [SybronEndo], Vortex [Dentsply Tulsa Dental Specialties], and HyFlex CM [Coltene-Whaledent, Allstetten, Switzerland]) NiTi files, all size 25/.04, were subjected to cyclic fatigue tests inside a novel, artificial ceramic canal with a curvature of 60° and a 5-mm radius. The model was immersed in water at 5 different preset temperatures. The number of cycles to failure (NCF) was recorded, and the fracture surface of the fragments was examined by a scanning electron microscope. The data were analyzed using 2-way analysis of variance with the significance level at 0.05. Results When the temperature was reduced from 60°C to 0°C, the NCF significantly increased from over 2 to 10 times for the NiTi file groups ( P P P Conclusions Cooling down to low temperatures may be an interesting strategy to improve the fatigue resistance of rotary NiTi files.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    20
    Citations
    NaN
    KQI
    []