High P–T phase transformations and metastability in the Zr0.5Hf0.5O2 solid-solution ceramic

2012 
Abstract High pressure–temperature ( P – T ) phases of the Zr x Hf 1− x O 2 ( x  = 0.5) solid-solution have been stabilised in a CO 2 laser heated diamond anvil cell. At room-temperature the monoclinic to orthorhombic-I structural transformation is initiated at 5–8 GPa. The X-ray diffraction (XRD) studies show these two phases coexist to above ∼15 GPa. A progressive increase in the orthorhombic-I phase abundance occurs, to culminate in full conversion at ∼20 GPa. At this lower threshold of ∼20 GPa transformation to the orthorhombic-II (cotunnite) structure can be initiated by heating in the range of 600–1200 °C. Substantial conversion to the cotunnite phase occurs in the same temperature range at 25–30 GPa. Raman signatures have been assigned to the two orthorhombic high-pressure phases, aided by the qualitative assessment of the complementary XRD data. Decompression experiments show that phase mixture composites of these high pressure structures, possibly with enhanced tribological properties, can be recovered to ambient conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    22
    References
    0
    Citations
    NaN
    KQI
    []