Modulate the phase transition temperature of hydrogels with both thermosensitivity and biodegradability

2010 
Abstract The synthesis and characterization of thermoresponsive hydrogels on the basis of N -isoproplyarylamide (NIPAAm) and acrylamide (AAm) copolymers crosslinked with a novel biodegradable crosslinker (PEG-co-PLA) were carried out in this study. Swelling measurement results demonstrated that four gels of PNAM5, PNAM10, PNAM12 and PNAM15 are thermoresponsive. The equilibrium swelling ratio and degradation of the hydrogels strongly depend on hydrogels composition. The morphology of the hydrogels was observed by scanning electron microscopy (SEM), and their thermal property was characterized by differential scanning calorimetry (DSC). The results show that the proportion of AAm in the copolymer has notable effect on the low critical solution temperature (LCST) of the hydrogel. When the molar ratio of AAm to NIPAAm was increased from 1:10 to 3:10 the LCST of the copolymer increased from 39.7 to 64.2 °C. The compression modulus of PNAM15 is of the highest among other hydrogels, because PNAM15 hydrogel has a more compact structure.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    17
    Citations
    NaN
    KQI
    []