Polymorphism in the LASP1 gene promoter region alters cognitive functions of patients with schizophrenia

2019 
Schizophrenia’s pathogenesis remains elusive. Cognitive dysfunction is the endophenotype and outcome predictor of schizophrenia. The LIM and SH3 domain protein (LASP1) protein, a component of CNS synapses and dendritic spines, has been related to the N-methyl-D-aspartate receptor (NMDAR) dysfunction hypothesis and schizophrenia. A single-nucleotide polymorphism (rs979607) in the LASP1 gene promoter region has been also implicated in schizophrenia susceptibility. The aim of this study was to investigate the role of the LASP1 rs979607 polymorphism in the cognitive functions of patients with schizophrenia. Two hundred and ninety-one Han Taiwanese patients with schizophrenia were recruited. Ten cognitive tests and two clinical rating scales were assessed. The scores of cognitive tests were standardized to T-scores. The genotyping of the LASP1 rs979607 polymorphism was performed using TaqMan assay. Among the 291 patients, 85 were C/C homozygotes of rs979607, 141 C/T heterozygotes, and 65 T/T homozygotes, which fitted the Hardy-Weinberg equilibrium. After adjusting age, gender, and education with general linear model, the C/C homozygotes performed better than C/T heterozygotes in overall composite score (p = 0.023), Category Fluency test (representing processing speed and semantic memory) (p = 0.045), and Wechsler Memory Scale (WMS)-III backward Spatial Span test (p = 0.025), albeit without correction for multiple comparisons for the latter two individual tests. To the best of our knowledge, this is the first study suggesting that the genetic variation of LASP1 may be associated with global cognitive function, category verbal fluency, and spatial working memory of patients with schizophrenia. The finding also lends support to the NMDAR dysfunction hypothesis of schizophrenia. More studies with longitudinal designs are warranted.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    0
    Citations
    NaN
    KQI
    []