Multifunctional Small Molecules as Potential Anti-Alzheimer’s Disease Agents

2021 
Alzheimer’s disease (AD) is a severe multifactorial neurodegenerative disorder characterized by a progressive loss of neurons in the brain. Despite research efforts, the pathogenesis and mechanism of AD progression are not yet completely understood. There are only a few symptomatic drugs approved for the treatment of AD. The multifactorial character of AD suggests that it is important to develop molecules able to target the numerous pathological mechanisms associated with the disease. Thus, in the context of the worldwide recognized interest of multifunctional ligand therapy, we report herein the synthesis, characterization, physicochemical and biological evaluation of a set of five (1a–e) new ferulic acid-based hybrid compounds, namely feroyl-benzyloxyamidic derivatives enclosing different substituent groups, as potential anti-Alzheimer’s disease agents. These hybrids can keep both the radical scavenging activity and metal chelation capacity of the naturally occurring ferulic acid scaffold, presenting also good/mild capacity for inhibition of self-Aβ aggregation and fairly good inhibition of Cu-induced Aβ aggregation. The predicted pharmacokinetic properties point towards good absorption, comparable to known oral drugs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []