Ecotoxicity Responses of the Macrophyte Algae Nitellopsis obtusa and Freshwater Crustacean Thamnocephalus platyurus to 12 Rare Earth Elements

2020 
Due to unique chemical properties, rare earth elements (REEs) are increasingly used in versatile technological applications. They are considered emerging environmental contaminants, since they become mobile instead of being bound in rocks. At present, the information on REE effects to aquatic biota is scarce and contradictory. This study aims to explore the ecotoxicity of 11 lanthanides (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Er, and Lu) and yttrium (Y) to charophyte algae Nitellopsis obtusa and microcrustaceans Thamnocephalus platyurus. Median lethal concentrations (LC50) were assessed in characean cells at 8, 12, 16, 20, and 24 days of exposure, and 24-h LC50s were determined in shrimps. According to the EU−Directive 93/67/EEC hazard classification scheme and 24-day LC50 values generated for N. obtusa, REE effects were assigned from “harmful” to “very toxic” (Gd), while 24-h LC50s for T. platyurus were classified as “harmful” or “toxic” (based on nominal concentrations) and as “toxic” or “very toxic” (based on REE free ion concentrations calculated with CHEAQS Next software). The data obtained for algae showed correlations with the REE atomic numbers (r = −0.68, p < 0.05) and ionic radii (r = 0.65, p < 0.05) at the most extended 24-day exposure only. The analysis of the trends of concentration−response (c–r) curves obtained at increasing exposure durations (8–24 days), alongside the 24-day LC50s ranging within almost two orders of magnitude, allowed a more-toxic heavy REE group to be distinguished, and somewhat different modes REE actions to be envisioned for N. obtusa.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []