On the ultra-relativistic Prompt Emission (UPE), the Hard and Soft X ray Flares (HXF and SXF) , and the extended thermal emission (ETE) in GRB 151027A

2017 
We analyze GRB 151027A within the binary-driven hypernova (BdHN) approach, with progenitor a carbon-oxygen core on the verge of a supernova (SN) explosion and a binary companion neutron star (NS). The hypercritical accretion of the SN ejecta onto the NS leads to its gravitational collapse into a black hole (BH), to the emission of the GRB and to a copious $e^+e^-$ plasma. The impact of this $e^+e^-$ plasma on the SN ejecta explains {the} early soft X-ray flare observed in long GRBs. We here apply this approach to the UPE and to the hard X-ray flares. We use GRB 151027A as a prototype. From the time-integrated and the time-resolved analysis we identify a double component in the UPE and confirm its ultra-relativistic nature. We confirm the mildly-relativistic nature of the soft X-ray flare, of the hard X-ray flare and of the ETE. We show that the ETE identifies the transition from a SN to the HN. We then address the theoretical justification of these observations by integrating the hydrodynamical propagation equations of the $e^+ e^-$ into the SN ejecta, the latter independently obtained from 3D smoothed-particle-hydrodynamics simulations. We conclude that the UPE, the hard X-ray flare and the soft X-ray flare do not form a causally connected sequence: Within our model they are the manifestation of \textbf{the same} physical process of the BH formation as seen through different viewing angles, implied by the morphology and the $\sim 300$~s rotation period of the HN ejecta.
    • Correction
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []