Waste sugar solution polymer-derived N-doped carbon spheres with an ultrahigh specific surface area for superior performance supercapacitors

2021 
Abstract Waste sugar solution (WSS), a waste by-product of manufacturing vitamin C, contains abundant waste acids and organics. In this work, a N/O-enriched copolymer was synthesized via a facile polymerization via the hydrogen bonding of O-containing functional groups and melamine and the crosslinking of aldehyde groups. Subsequently, N-doped carbon spheres were prepared by a typical carbonation/activation method. Remarkably, benefiting from an ultrahigh specific surface area (3612 m2/g) and rich heteroatom content (4.3% for N, 8.8% for O), the carbon spheres deliver a high specific capacitance of 387 F/g at 50 mA/g and 283 F/g at 5 A/g with 6 M KOH in two-electrode system. The assembled symmetric electric double-layer capacitor exhibits high energy density of 10.83 Wh/kg at 11.10 W/kg. This research provides a facile method for preparing N/O-doped carbon spheres by WSS, and confirms the excellent electrochemical performance of WSS-derived carbons in energy storage applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    2
    Citations
    NaN
    KQI
    []