Aqueous Reaction of Dicarbonyls with Ammonia as a Potential Source of Organic Nitrogen in Airborne Nanoparticles

2017 
Nitrogen-containing organic species such as imines and imidazoles can be formed by aqueous reactions of carbonyl-containing compounds in the presence of ammonia. In the work described here, these reactions are studied in airborne aqueous nanodroplets containing ammonium sulfate and glyoxal, methylglyoxal, or glycolaldehyde using a combination of online and offline mass spectrometry. N/C ratios attributed to the organic fraction of the particles (N/Corg) produced from glyoxal and methylglyoxal were quantified across a wide relative humidity (RH) range. As the RH was lowered, glyoxal was found to increase N/Corg, attributed to “salting-in” with increasing solute concentration, while methylglyoxal led to a decrease in N/Corg, attributed to “salting-out”. Glycolaldehyde was found to evaporate from the droplets rather than react in the aqueous phase and did not form particulate-phase organic matter from aerosol drying under any of the conditions studied. The results are discussed in the context of ambient nano...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    12
    Citations
    NaN
    KQI
    []