In Situ Formed Pt3Ti Nanoparticles on a Two-dimensional Transition Metal Carbide (MXene) Used as Efficient Catalysts for Hydrogen Evolution Reactions

2019 
The design of efficient catalysts capable of delivering high currents at low overpotentials for hydrogen evolution reactions (HERs) is urgently needed to use catalysts in practical applications. Herein, we report platinum (Pt) alloyed with titanium (Ti) from the surface of Ti3C2Tx MXenes to form Pt3Ti intermetallic compound (IMC) nanoparticles (NPs) via in situ coreduction. In situ X-ray absorption spectroscopy (XAS) indicates that Pt undergoes a temperature-dependent transformation from single atoms to intermetallic compounds, and the catalyst reduced at 550 °C exhibits a superior HER performance in acidic media. The Pt/Ti3C2Tx-550 catalyst outperforms commercial Pt/Vulcan and has a small overpotential of 32.7 mV at 10 mA cm–2 and a low Tafel slope of 32.3 mV dec–1. The HER current was normalized by the mass and dispersion of Pt, and the mass activity and specific activity of Pt/Ti3C2Tx-550 are 4.4 and 13 times higher, respectively, than those of Pt/Vulcan at an overpotential of 70 mV. The density functi...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    47
    Citations
    NaN
    KQI
    []