Developing the Swiss soil spectral library for local estimation andmonitoring

2021 
Abstract. Information on soils' composition and physical, chemical and biological properties is paramount to elucidate agroecosystem functioning in space and over time. For this purposes we developed a national Swiss soil spectral library (SSL; n = 4374) in the mid-infrared (mid-IR), calibrating 17 properties from legacy measurements on soils from the Swiss biodiversity monitoring program (n = 3778; 1094 sites) and the Swiss long-term monitoring network (n = 596; 71 sites). General models were trained with the interpretable rule-based learner CUBIST, testing combinations of {5, 10, 20, 50, 100} committees of rules and {2, 5, 7, 9} neighbors to localize predictions with repeated by location grouped ten-fold cross-validation. To evaluate the information in spectra to facilitate long-term soil monitoring at a plot-level, we conducted 71 model transfers for the NABO sites to induce locally relevant information from the SSL, using the data-driven sample selection method rs-local. Eleven soil properties were estimated with discrimination capacity suitable for screening (R2 > 0.6), out of which total carbon (C), organic C (OC), total N, organic matter content, pH, and clay showed accuracy eligible for accurate diagnostics (R2 > 0.8). Cubist and the spectra estimated total C accurately with RMSE = 0.84 % while the measured range was 0.1–⁠58.3 %, and OC with RMSE = 1.20 % (measured range 0.0–⁠27.3 %). Compared to general estimates of properties from Cubist, local modeling on average reduced the root mean square error of total C per site fourfold. We found that the selected SSL subsets were highly dissimilar in terms of both their spectral input space and the measured values. This suggests that data-driven selection with RS-LOCAL leverages chemical diversity in composition rather than similarity. Our results suggest that mid-IR soil estimates were sufficiently accurate to support many soil applications that require a large volume of input data, such as precision agriculture, soil C accounting and monitoring, and digital soil mapping. This SSL can be updated continuously, for example with samples from deeper profiles and organic soils, so that the measurement of key soil properties becomes even more accurate and efficient in the near future.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []