Overcoming the Barrier on Time Step Size in Multiscale Molecular Dynamics Simulation of Molecular Liquids

2012 
We propose and validate a new multiscale technique, the extrapolative isokinetic Nose-Hoover chain orientational (EINO) motion multiple time step algorithm for rigid interaction site models of molecular liquids. It nontrivially combines the multiple time step decomposition operator method with a specific extrapolation of intermolecular interactions, complemented by an extended isokinetic Nose-Hoover chain approach in the presence of translational and orientational degrees of freedom. The EINO algorithm obviates the limitations on time step size in molecular dynamics simulations. While the best existing multistep algorithms can advance from a 5 fs single step to a maximum 100 fs outer step, we show on the basis of molecular dynamics simulations of the TIP4P water that our EINO technique overcomes this barrier. Specifically, we have achieved giant time steps on the order of 500 fs up to 5 ps, which now become available in the study of equilibrium and conformational properties of molecular liquids without a loss of stability and accuracy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    16
    Citations
    NaN
    KQI
    []