High efficiency flexible silicon photodetectors and photovoltaics (Conference Presentation)

2018 
The implementation of ultra-thin and highly efficient photodetectors and photovoltaic devices is crucial to realize flexible and wearable products in the era of Internet of Things (IoT). CMOS-compatible processing and well-established manufacturing makes Silicon (Si) a great material of choice in many applications but thin crystalline-Si is not as efficient as bulk Si in absorbing light. Light bending phenomenon enabled by micro-/nanoscale holes have been recently demonstrated to achieve high speed Si photodiodes and high efficiency thin crystalline-Si solar cells. Such small-scale devices can be released and transferred from mother substrate to various platforms such as the tips of fiber optic cables for realizing fiber receivers and probing applications in vivo studies. In this study, preliminary results of morphological and electrical characterization of transferred devices are demonstrated and details of the transfer techniques are presented. The quantum efficiency of devices transferred to aluminum coated glass were observed to get enhanced compared to the ones on Si substrate.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []