Modulated diamond cutting for the generation of complicated micro/nanofluidic channels

2019 
Abstract A novel modulated diamond cutting (MDC) technique is proposed for the generation of complicated micro/nanofluidic channels. The MDC adopts a turning configuration through a four-axis ultra-precision diamond lathe, a motion modulation based milling operation is introduced by extending the virtual spindle technique. This unique principle makes the MDC more suitable to generate micro/nanofluidic channels through compromising certain inherent advantages of both diamond turning and milling. Moreover, taking advantage of axial servo motion modulation as well as tool mark modulation using the re-cutting effect, complicated channels can be effectively generated having spatially-varying shapes as well as hierarchical micro/nanostructures. Through both numerical simulation and experimental cutting, capability and outperformance of the MDC are demonstrated well. The result suggests that the MDC is capable to generate ultra-smooth channel surfaces with complicated shapes and superimposed surface nanostructures, exhibiting significant superiority for the generation of micro/nanofluidic channels with high flexibility, high efficiency, and high universality.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    6
    Citations
    NaN
    KQI
    []