X-ray Free-Electron Lasers: Illuminating a New Path to Single Particle Imaging

2013 
X-ray sources are exceptional tools for studying the structure of matter down to atomic-length scales, but across a wide range of fields there are samples that have remained notoriously difficult to study, such as airborne particles, particles in solution, membrane proteins, and macromolecular complexes. The advancement of imaging techniques to address these elusive samples has been a big motivation for constructing new X-ray light sources. Fourth-generation light sources, commonly called X-ray free-electron lasers (XFELs) [1], represent a huge step forward, with upwards of nine orders of magnitude increase in peak brightness for hard X-rays. As of 2012, four such XFELs are already productively operational (in Germany [2], the U.S. [3], Japan [4], and Italy [5]), with at least five more planned for the next 10 years. These lasers produce femtosecond pulses of extremely intense coherent radiation through the positive feedback between a co-moving electron bunch and the radiation it emits when they traverse ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    71
    References
    1
    Citations
    NaN
    KQI
    []