A Novel Fault Diagnosis Method based on Stacked LSTM

2020 
Abstract Fault diagnosis is essential to ensure the operation security and economic efficiency of the chemical system. Many fault diagnosis methods have been designed for the chemical process, but most of them ignore the temporal correlation in the sequential observation signals of the chemical process. A novel deep learning method based on Stacked Long Short-Term Memory (LSTM) neural network is proposed, which can effectively model sequential data and detect the abnormal values. The proposed method is also able to fully exploit the long-term dependencies information in raw data and adaptively extract the representative features. The dataset of Tennessee Eastman (TE) process is utilized to verify the practicability and superiority of the proposed method. Extensive experimental results show that the fault detection and diagnosis model we proposed has an excellent performance when compared with several state-of-the-art baseline methods.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []