A Composite Membrane Based on Sulfonated Polystyrene Implanted in a Stretched PTFE Film for Vanadium Flow Batteries

2020 
The quality of ion-selective membranes determines the efficiency of Vanadium Flow Batteries (VFBs), and alternatives to expensive Nafion™ materials are actively being searched for. One of the membrane architecture approaches is to imitate the Nafion™ structure with two separate phases: a conductive sulfonated polymer and an inner matrix. We introduce a new composite material based on sulfonated styrene polymerized inside the pores of a stretched PTFE matrix. Variation of polystyrene content and a sulfonation degree allowed to obtain membranes with IEC from to 0.96 to 1.84 mmol/g. Balanced vanadium permeability (ca. 5.5 ⋅ 10-6  cm2 /min) and proton conductivity (ca. 50 mS/cm) were achieved for the material with 21-23 % polystyrene content and a sulfonation degree up to 94 %. Membranes showed stable cycling with 81 % energy efficiency in a single-cell VFB. This work contributes to the existing knowledge of Nafion alternatives by providing a cheap and scalable method of membrane production.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    1
    Citations
    NaN
    KQI
    []