Physical properties of tsunami-affected soils in Aceh, Indonesia: 2½ years after the tsunami

2009 
Abstract On 26 December 2004, a tsunami caused extensive loss of life, damaged property and degraded agricultural land in the province of Aceh, Indonesia. While some of the associated soil chemical changes have been documented, information on soil physical properties is sparse. The objective of this study was to quantify physical properties of some tsunami-affected upland agricultural soils in Aceh, Indonesia. Soil was sampled approximately 21/2 years after the tsunami, from the 0–0.1 m, 0.1–0.3 m and 0.3–0.5 m depths in four sites in the villages of Kling Cot Aroun in Aceh Besar sub-district, Kuta Kruen in Aceh Utara sub-district, Udjong Blang Mesjid in Bireuen sub-district and Meue in Pidie Jaya sub-district on the east coast of Aceh. These sites were located within 1 km from the sea at elevations ranging from 0 to 5 m ASL. The soils were Ultisols except for Meue, which was an Entisol. Soil properties measured were bulk density, structural stability and particle size distribution. Soil water retention, pore-size distribution and saturated hydraulic conductivity were estimated by inserting the values of bulk density, clay, sand and silt contents into pedotransfer functions from the literature. The analyses conducted during this study did not permit us to ascertain what proportion of the soil particles were of tsunami-origin. Nonetheless, deposition of finer-textured material may have occurred in two of the sites. In comparison with the greyish-white, coarse textured soil in the rest of the profile, a finer-textured yellow horizon was present in the lower slopes of the Udjong Blang Mesjid site. At Meue, clay and silt contents were higher in the surface 0.3 m than in the 0.3–0.5 m depth, although a distinct horizon was absent. Particle size distribution in all sites was dominated by the sand fraction, although clay and silt contents were relatively high (20–30 g 100 g − 1 ) at Kuta Kruen. Among the sand fractions, fine sand (0.02–0.25 mm) was highest at Kling Cot Aroun, Kuta Kruen and in the “yellow horizon” at Udjong Blang Mesjid, making them more prone to hardsetting and compaction after intensive tillage. Soil compaction was present in all sites with that in the “yellow horizon” at Udjong Blang Mesjid being highest. The relatively low porosity in this layer may be beneficial, as it is likely to reduce the high rates of water drainage and nutrient leaching in this sandy soil. The more compacted soils were characterised by higher numbers of micropores ( r , pore radius  r  > 14.3 μm), lower hydraulic conductivity and intensive gleying, indicating frequent waterlogging. The soils in all depths from Kling Cot Aroun and the “yellow horizon” at Udjong Blang Mesjid were very dispersive, that at Meue moderately dispersive in the 0.3–0.5 m depth but stable in the 0–0.1 m depth, and at Kuta Kruen very stable in all depths. Soil physical degradation was a feature of the soils examined, and its amelioration will be the key to improving and sustaining crop yields in these soils. Possible management interventions include organic amendments such as compost or manure, and minimum tillage options such permanent beds or zero tillage with retention of crop residues as in situ mulch together with suitable cover crops.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    13
    Citations
    NaN
    KQI
    []