PREVENTION OF CISPLATIN-INDUCED NEPHROTOXICITY BY GLUCOSIDES OF ASCORBIC ACID AND [ALPHA]-TOCOPHEROL

2008 
Abstract Background Cisplatin is one of the most widely used cytotoxic therapeutic agents for the treatment of cancer. This drug, at effective higher doses, causes many physiological adverse effects such as nephrotoxicity and genotoxicity. The toxicity of the drug has been attributed to the induction of oxidative free radicals. Methods Following intraperitoneal administration of cisplatin and ascorbic acid monoglucoside (AsAG) or α -tocopherol monoglucoside (TMG), investigations were conducted on levels of serum urea and creatinine, peroxidation of lipids in renal tissues, renal antioxidants and histopathology of renal tissue. Results Administration of cisplatin to mice induced a marked renal failure, characterized by significant increase in serum urea and creatinine levels in addition to severe alterations in renal tissue architecture. Cisplatin also induced oxidative stress as indicated by increased lipid peroxidation and decreased levels of reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase in renal tissues. Administration of AsAG or TMG markedly reduced the cisplatin-induced higher plasma creatinine and urea levels and counteracted the deleterious effects of cisplatin on oxidative stress markers and protected the tissues from the cisplatin-induced lipid peroxidation. Conclusion These results indicated that AsAG or TMG has a protective effect against cisplatin-induced renal damage in mice. The protection is mediated by preventing the decline of antioxidant status. The results have implications in use of AsAG or TMG in human application for protecting against drug-induced nephrotoxicity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    32
    References
    61
    Citations
    NaN
    KQI
    []