Combination of natural killer cell-based immunotherapy and irreversible electroporation for the treatment of hepatocellular carcinoma.

2021 
Hepatocellular carcinoma (HCC) is among the most lethal cancer types despite great advancement in overall survival of the patients over the last decades. Surgical resection or partial hepatectomy has been approved as the curative treatment for early-stage HCC patients however only up to 30% of them are eligible for the procedures. Natural killer (NK) cells are cytotoxic lymphocytes recognized for killing virally infected cells and improving immune functions for defending the body against malignant cells. Although autologous NK cells failed to demonstrate significant clinical benefit, transfer of allogeneic adoptive NK cells arises as a promising approach for the treatment of solid tumors. The immunosuppressive tumor microenvironment and inadequate homing efficiency of NK cells to tumors can inhibit adoptive transfer immunotherapy (ATI) efficacy. However, potential of the NK cells is challenged by the transfection efficiency. The local ablation techniques that employ thermal or chemical energy have been investigated for the destruction of solid tumors for three decades and demonstrated promising benefits for individuals not eligible for surgical resection or partial hepatectomy. Irreversible electroporation (IRE) is one of the most recent minimally invasive ablation methods that destruct the cell within the targeted region through non-thermal energy. IRE destroys the tumor cell membrane by delivering high-frequency electrical energy in short pulses and overcomes tumor immunosuppression. The previous studies demonstrated that IRE can induce immune changes which can facilitate activation of specific immune responses and improve transfection efficiency. In this review paper, we have discussed the mechanism of NK cell immunotherapy and IRE ablation methods for the treatment of HCC patients and the combinatorial benefits of NK cell immunotherapy and IRE ablation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    108
    References
    0
    Citations
    NaN
    KQI
    []