Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure

2011 
Multi-walled carbon nanotube (MWCNT)/high density polyethylene (HDPE) and graphene nanosheets (GNS)/HDPE composites with a segregated network structure were prepared by alcohol-assisted dispersion and hot-pressing. Instead of uniform dispersion in polymer matrix, MWCNTs and GNSs distributed along specific paths and formed a segregated conductive network, which results in a low electrical percolation threshold of the composites. The electrical properties of the GNS/HDPE and MWCNT/HDPE composites were comparatively studied, it was found that the percolation threshold of the GNS/HDPE composites (1 vol.%) was much higher than that of the MWCNT/HDPE composites (0.15 vol.%), and the MWCNT/HDPE composite shows higher electrical conductivity than GNS/HDPE composite at the same filler content. According to the values of critical exponent, t, the two composites may have different electrical conduction mechanisms: MWCNT/HDPE composite represents a three-dimensional conductive system, while the GNS/HDPE composite represents a two-dimensional conductive system. The improving effect of GNSs as conducting fillers on the electrical conductivity of their composites is far lower than theoretically expected. (C) 2010 Elsevier Ltd. All rights reserved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    318
    Citations
    NaN
    KQI
    []