Size-Dependent Orientational Dynamics of Brownian Nanorods

2018 
Successful assembly of suspended nanoscale rod-like particles depends on fundamental phenomena controlling rotational and translational diffusion. Despite the significant developments in fluidic fabrication of nanostructured materials, the ability to quantify the dynamics in processing systems remains challenging. Here we demonstrate an experimental method for characterization of the orientation dynamics of nanorod suspensions in assembly flows using orientation relaxation. This relaxation, measured by birefringence and obtained after rapidly stopping the flow, is deconvoluted with an inverse Laplace transform to extract a length distribution of aligned nanorods. The methodology is illustrated using nanocelluloses as model systems, where the coupling of rotational diffusion coefficients to particle size distributions as well as flow-induced orientation mechanisms are elucidated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    50
    References
    19
    Citations
    NaN
    KQI
    []