Boardman–Vogt tensor products of absolutely free operads

2019 
We establish a combinatorial model for the Boardman--Vogt tensor product of several absolutely free operads, that is free symmetric operads that are also free as $\mathbb{S}$-modules. Our results imply that such a tensor product is always a free $\mathbb{S}$-module, in contrast with the results of Kock and Bremner--Madariaga on hidden commutativity for the Boardman--Vogt tensor square of the operad of non-unital associative algebras.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    12
    References
    2
    Citations
    NaN
    KQI
    []