Molybdenum - A Novel Biodegradable Implant Material for Structural Applications?

2019 
Molybdenum as a potentially new biodegradable material was investigated. Degradation behavior of commercially high purity molybdenum was observed in simulated physiological salt solutions (Kokubo's SBF with/without TRIS-HCl, Cu2+ addition and 0.9 % NaCl solution). Potentiodynamic polarization, immersion mass loss and ion concentration measurements paired with REM/EDX analysis reveal gradual dissolution of molybdenum in the proper order of magnitude for stent application, associated with formation of thin, non-passivating corrosion products. The underlying corrosion mechanism is discussed as well as a comparison to literature data. However, formation of calcium phosphates (CaP) in SBF significantly decreases corrosion rates. In-situ polarization was found to be a potential way for overcoming this problem and simultaneously enhancing corrosion above the benchmark for a degradable stent material. A first in-vitro cytotoxicity assessment for HFIB fibroblasts in direct contact to corroding molybdenum did not show any signs for decreased cell viability. Thus, molybdenum appears to be a promising novel biodegradable metal for structural applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []