Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time
2019
This paper presents a novel set of image texture features generalizing standard grey-level co-occurrence matrices (GLCM) to multimodal image data through joint intensity matrices (JIMs). These are used to predict the survival of glioblastoma multiforme (GBM) patients from multimodal MRI data. The scans of 73 GBM patients from the Cancer Imaging Archive are used in our study. Necrosis, active tumor, and edema/invasion subregions of GBM phenotypes are segmented using the coregistration of contrast-enhanced T1‐weighted (CE-T1) images and its corresponding fluid-attenuated inversion recovery (FLAIR) images. Texture features are then computed from the JIM of these GBM subregions and a random forest model is employed to classify patients into short or long survival groups. Our survival analysis identified JIM features in necrotic (e.g., entropy and inverse-variance) and edema (e.g., entropy and contrast) subregions that are moderately correlated with survival time (i.e., Spearman rank correlation of 0.35). Moreover, nine features were found to be associated with GBM survival with a Hazard-ratio range of 0.38–2.1 and a significance level of p p = 0.003 was achieved when combining JIM, GLCM, and gene expression features into a single radiogenomic signature. In summary, our study demonstrated the usefulness of modeling the joint intensity characteristics of CE-T1 and FLAIR images for predicting the prognosis of patients with GBM.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
41
Citations
NaN
KQI