Effects of ultrasound-assisted freezing at different power levels on the structure and thermal stability of common carp (Cyprinus carpio) proteins

2019 
Abstract This study investigated the effect of ultrasound-assisted immersion freezing (UIF) at different ultrasonic power levels on the myofibrillar protein primary, secondary and tertiary structures of common carp ( Cyprinus carpio ). Furthermore, protein thermal stability, electrophoresis pattern, and microstructure of the muscle tissue were also studied. Compared with a control, an ultrasonic power of less than 175 W had no significant negative effect on protein primary structure ( P  > 0.05), including total sulfhydryl, reactive sulfhydryl, carbonyl groups, free amino groups, dityrosine content, and surface hydrophobicity. UIF at 175 W (UIF-175) minimized the changes in protein secondary and tertiary structures. There were no obvious changes in the SDS-PAGE patterns of the control and frozen sample proteins. Microstructure analysis showed that an appropriate ultrasonic power (UIF-175) promoted the formation of smaller and more uniform ice crystals, reduced the damage of muscle tissue by ice crystals, and maintained the sarcomere integrity. In addition, UIF-175 samples had higher protein thermal stability. Overall, ultrasound treatment at a proper power (UIF-175) effectively minimized the changes in protein structure and protected the protein thermal stability during freezing process.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    55
    References
    38
    Citations
    NaN
    KQI
    []