High-speed laser Doppler perfusion imaging using an integrating CMOS image sensor

2005 
This paper describes the design and the performance of a new high-speed laser Doppler imaging system for monitoring blood flow over an area of tissue. The new imager delivers high-resolution flow images (256×256 pixels) every 2 to 10 seconds, depending on the number of points in the acquired time-domain signal (32–512 points). This new imaging modality utilizes a digital integrating CMOS image sensor to detect Doppler signals in a plurality of points over the area illuminated by a divergent laser beam of a uniform intensity profile. The integrating property of the detector improves the signal-to-noise ratio of the measurements, which results in high-quality flow images. We made a series of measurements in vitro to test the performance of the system in terms of bandwidth, SNR, etc. Subsequently we give some examples of flow-related images measured on human skin, thus demonstrating the performance of the imager in vivo. The perspectives for future implementations of the imager for clinical and physiological applications are discussed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    82
    Citations
    NaN
    KQI
    []