Ligand-regulated oligomerization of b 2 -adrenoceptors in a model lipid bilayer This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits distribution,andreproductioninanymedium,providedtheoriginalauthorandsourcearecredited.Thislicensedoesnot permit commercial exploitation without specific permission.

2009 
The b2-adrenoceptor (b2AR) was one of the first Family A G protein-coupled receptors (GPCRs) shown to form oligomers in cellular membranes, yet we still know little about the number and arrangement of protomers in oligomers, the influence of ligands on the organization or stability of oligomers, or the requirement for other proteins to promote oligomerization. We used fluorescence resonance energy transfer (FRET) to characterize the oligomerization of purified b2AR site-specifically labelled at three different positions with fluorophores and reconstituted into a model lipid bilayer. Our results suggest that the b2AR is predominantly tetrameric following reconstitution into phospholipid vesicles. Agonists and antagonists have little effect on the relative orientation of protomers in oligomeric complexes. In contrast, binding of inverse agonists leads to significant increases in FRET efficiencies for most labelling pairs, suggesting that this class of ligand promotes tighter packing of protomers and/or the formation of more complex oligomers by reducing conformational fluctuations in individual protomers. The results provide new structural insights into b2AR oligomerization and suggest a possible mechanism for the functional effects of inverse agonists.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    2
    Citations
    NaN
    KQI
    []