Proof of Correctness and Time Complexity Analysis of a Maximum Distance Transform Algorithm.

2019 
The distance transform algorithm is popular in computer vision and machine learning domains. It is used to minimize quadratic functions over a grid of points. Felzenszwalb and Huttenlocher (2004) describe an O(N) algorithm for computing the minimum distance transform for quadratic functions. Their algorithm works by computing the lower envelope of a set of parabolas defined on the domain of the function. In this work, we describe an average time O(N) algorithm for maximizing this function by computing the upper envelope of a set of parabolas. We study the duality of the minimum and maximum distance transforms, give a correctness proof of the algorithm and its runtime, and discuss potential applications.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    0
    Citations
    NaN
    KQI
    []