[Preparation and in vitro evaluation of arsenic trioxide glioma targeting drug delivery system loaded by PAMAM dendrimers co-modified with RGDyC and PEG].

2018 
: Arsenic trioxide (ATO) is an effective component of traditional Chinese medicine arsenic. The existing studies have shown its good inhibition and apoptosis ability on a variety of tumours. However, its toxicity and difficulties in the permeability into the blood brain barrier (BBB) has the limitation in the application of glioma treatment. Polyamide-amine dendrimer (PAMAM) is a synthetic polymer with many advantages, such as a good permeability, stability and biocompatibility. Additionally, the 5th generation of PAMAM is an ideal drug carrier due to its three-dimensional structure. In this study, the 5th generation of PAMAM co-modified with RGDyC and PEG, then confirmed by ¹H-NMR. The average particle size of nanoparticles was about 20 nm according to the nanoparticle size-potential analyser and transmission electron microscopy. in vitro release showed that the nanocarrier not only has the sustained release effect, but also some pH-sensitive properties. The cell results showed that PAMAM co-modified with RGDyC and PEGAM has a lower cytotoxicity than the non-modified group in vitro. Accordingly, the drug delivery system has a better anti-tumour effect across the blood brain barrier (BBB) in vitro, which further proves the tumour targeting of RGDyC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []