Transforming Type II to Type I c-Met kinase inhibitors via combined scaffold hopping and structure-guided synthesis of new series of 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives

2021 
Abstract Novel 1,3,4-thiadiazolo[2,3-c]-1,2,4-triazin-4-one derivatives 3a-e, 4a-f and 5a-f were designed as Type I c-Met kinase inhibitors based on scaffold hopping of our previous Type II c-Met kinase lead. Target compounds were then synthesized under the guidance of molecular docking analysis to identify the potential inhibitors that fit the binding pocket of c-Met kinase in the characteristic manner as the reported Type I c-Met kinase inhibitors. All synthesized derivatives were evaluated for their c-Met kinase inhibitory activity at 10 µM concentration, where 3d, 5d and 5f displayed more than 80% inhibition. Further IC50 investigation of these compounds identified 5d as the most potent c-Met kinase inhibitor with IC50 value of 1.95 µM. Moreover, 5d showed selective antitumor activity against c-Met overexpressing colon HCT-116 and lung A549 adenocarcinoma cells with IC50 values of 6.18 and 10.6 µg/ml, respectively. More significantly, 5d effectively inhibited c-Met phosphorylation in the Western blot experiment. Also, 5d induced cellular apoptosis in HCT-116 cancer cells as well as cell cycle arrest with accumulation of cells in G2/M phase. Finally, kinase selectivity profiling of 5d against nine oncogenic kinases revealed its selectivity to only Tyro3 kinase (% inhibition = 80%, IC50 = 3 µM). All these experimental findings clearly demonstrates that 5d is a potential dual acting inhibitor against c-Met and Tyro3 kinases standing out as a viable lead that deserves further investigation and development to new generation of antitumor agents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    0
    Citations
    NaN
    KQI
    []