Enantioselective cleavage of cyclobutanols through Ir‐catalyzed C‐C bond activation: Mechanistic and synthetic aspects

2020 
The Ir-catalyzed conversion of prochiral tert-cyclobutanols to β-methyl-substituted ketones proceeds under comparably mild conditions in toluene (45-110 °C) and is particularly suited for the enantioselective desymmetrization of β-oxy-substituted substrates to give products with a quaternary chirality center with up to 95 % ee using DTBM-SegPhos as a chiral ligand. Deuteration experiments and kinetic isotope effect measurements revealed major mechanistic differences to related RhI -catalyzed transformations. Supported by DFT calculations we propose the initial formation of an IrIII hydride intermediate, which then undergoes a β-C elimination (C-C bond activation) prior to reductive C-H elimination. The computational model also allows the prediction of the stereochemical outcome. The Ir-catalyzed cyclobutanol cleavage is broadly applicable but fails for substrates bearing strongly coordinating groups. The method is of particular value for the stereo-controlled synthesis of substituted chromanes related to the tocopherols and other natural products.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    54
    References
    0
    Citations
    NaN
    KQI
    []