Bacterial cellulose sponges obtained with green cross-linkers for tissue engineering

2020 
Abstract Three-dimensional (3D) porous structures with controlled pore size and interconnected pores, good mechanical properties and biocompatibility are of great interest for tissue engineering. In this work we propose a new strategy to obtain highly porous 3D structures with improved properties using bacterial cellulose (BC) and eco-friendly additives and processes. Glucose, vanillin and citric acid were used as non-toxic and cheap cross-linkers and γ-aminopropyltriethoxysilane was used to partially replace the surface OH groups of cellulose with amino groups. The efficiency of grafting and cross-linking reactions was confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphological investigation of BC sponges revealed a multi-hierarchical organization after functionalization and cross-linking. Micro-computed tomography analysis showed 80–90% open porosity in modified BC sponges. The thermal and mechanical properties of the sponges were influenced by the cross-linker type and concentration. The strength-to-weight ratio of BC sponges cross-linked with glucose and citric acid was 150% and 120% higher compared to that of unmodified BC sponge. In vitro assays revealed that the modified BC sponges are non-cytotoxic and do not trigger an inflammatory response in macrophages. This study provides a simple and green method to obtain highly porous cellulose sponges with hierarchical design, biocompatibility and good mechanical properties.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    18
    Citations
    NaN
    KQI
    []