Efficient Adjoint Computation for Wavelet and Convolution Operators [Lecture Notes]

2016 
First-order optimization algorithms, often preferred for large problems, require the gradient of the differentiable terms in the objective function. These gradients often involve linear operators and their adjoints, which must be applied rapidly. We consider two example problems and derive methods for quickly evaluating the required adjoint operator. The first example is an image deblurring problem where we must compute efficiently the adjoint of multistage wavelet reconstruction. Our formulation of the adjoint works for a variety of boundary conditions, which allows the formulation to generalize to a larger class of problems. The second example is a blind channel estimation problem taken from the optimization literature where we must compute the adjoint of the convolution of two signals. In each example, we show how the adjoint operator can be applied efficiently while leveraging existing software.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    8
    References
    5
    Citations
    NaN
    KQI
    []