Erlangen Slot Machine: An FPGA-Based Dynamically Reconfigurable Computing Platform

2010 
Dynamically partially reconfigurable architectures combine high performance and flexibility. They offer a novel possibility to dynamically load and execute hardware modules, previously only known for software modules. In order to realize these promises, the following dilemmas had to be solved: the too often limited memory of reconfigurable architectures for many data-intensive applications, the restricted communication possibilities for partial hardware modules, the unflexible tool flow for partial module design, and the IO-pin dilemma, that the placement of hardware modules, with requirements for input and output signals to the periphery, was predetermined to a single position. These were physical restrictions and technical problems limiting the scope or applicability of dynamically partially reconfigurable architectures. This led us to the development of a new FPGA-based reconfigurable computer called Erlangen Slot Machine, a platform for interdisciplinary research on dynamically reconfigurable systems. It leverages many architectural constraints of existing platforms and allows a user to partially reconfigure hardware modules arranged in so-called slots. The uniqueness of this computer stems from a) a new slot-oriented hardware architecture, b) a set of novel inter-module communication techniques, and c) concepts for dynamic and partial reconfiguration management.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    2
    Citations
    NaN
    KQI
    []