Combined pre- and postsynaptic action of IgG antibodies in Miller Fisher syndrome

2000 
Background: Miller Fisher syndrome (MFS), a variant of the Guillain-Barre syndrome, is associated with the presence of neuromuscular blocking antibodies, some of which may be directed at the ganglioside GQ1b. Materials and Methods: The authors investigated the in vitro effects of serum and purified immunoglobulin (Ig) G in a total of 11 patients with typical MFS during active disease, and in three of those patients after recovery. From one patient’s serum, we prepared an IgG fraction enriched in anti-GQ1b antibodies by affinity chromatography. For combined pre- and postsynaptic analysis, endplate currents were recorded by a perfused macro-patch clamp electrode. Postsynaptic nicotinic acetylcholine receptor channels were investigated by an outside-out patch clamp technique in cultured mouse myotubes. Results: AllMFS-sera depressed evoked quantal release and reduced the amplitude of postsynaptic currents. Five of the 11 sera were additionally examined by outside-out patch clamp analysis and caused a concentration-dependent and reversible decrease in acetylcholine-induced currents. The time course of activation and desensitization of nicotinic acetylcholine receptor channels was not altered by MFS-IgG. Nine patients (82 %) were positive for anti-GQ1b antibodies in ELISA and dot–blot. The enriched anti-GQ1b antibody fraction had a similar effect as whole serum. After recovery from MFS, blocking activity was lost and sera originally positive for anti-GQ1b antibodies became negative. Conclusion: Circulating IgG antibodies induce both pre- and postsynaptic blockade and may play a pathogenic role in acute MFS.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    61
    Citations
    NaN
    KQI
    []