Renal Protection Against Ischemia Perfusion Injury: Hemoglobin Based Oxygen Carrier-201 vs. Blood as an Oxygen Carrier in Ex vivo Subnormothermic Machine Perfusion

2019 
BACKGROUND: The optimal method of oxygen delivery to donor kidneys during ex vivo machine perfusion has not been established. We have recently reported the beneficial effects of subnormothermic (22 degrees C) blood perfusion in the preservation of porcine donation after circulatory death kidneys. Since using blood as a clinical perfusate has limitations, including matching availability and potential presence of pathogen, we sought to assess hemoglobin-based oxygen carrier (HBOC-201) in oxygen delivery to the kidney for renal protection. METHODS: Pig kidneys (n = 5) were procured after 30 minutes of warm in situ ischemia by cross-clamping the renal arteries. Organs were flushed with histidine tryptophan ketoglutarate solution and subjected to static cold storage or pulsatile perfusion with an RM3 pump at 22 degrees C for 4 hours with HBOC-201 and blood. Thereafter, kidneys were reperfused with normothermic (37 degrees C) oxygenated blood for 4 hours. Blood and urine were subjected to biochemical analysis. Total urine output, urinary protein, albumin/creatinine ratio, flow rate, resistance were measured. Acute tubular necrosis, apoptosis, urinary kidney damage markers, neutrophil gelatinase-associated lipocalin 1, and interleukin 6 were also assessed. RESULTS: HBOC-201 achieved tissues oxygen saturation equivalent to blood. Furthermore, upon reperfusion, HBOC-201 treated kidneys had similar renal blood flow and function compared with blood-treated kidneys. Histologically, HBOC-201 and blood-perfused kidneys had vastly reduced acute tubular necrosis scores and degrees of terminal deoxynucleotidyl transferase 2'-deoxyuridine, 5'-triphosphate nick end labeling staining versus kidneys treated with cold storage. Urinary damage markers and IL6 levels were similarly reduced by both blood and HBOC-201. CONCLUSIONS: HBOC-201 is an excellent alternative to blood as an oxygen-carrying molecule in an ex vivo subnormothermic machine perfusion platform in kidneys.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    18
    Citations
    NaN
    KQI
    []